Страница:
<< 1 2 3 [Всего задач: 14]
Две окружности пересекаются в точках
P и
Q. Третья окружность с центром
P
пересекает первую окружность в точках
A и
B, а вторую — в точках
C и
D. Докажите, что
AQD =
BQC.
Шестиугольник
ABCDEF вписанный, причем
AB ||
DE
и
BC ||
EF. Докажите, что
CD ||
AF.
Многоугольник
A1A2...
A2n вписанный. Про все
пары его противоположных сторон, кроме одной, известно, что они
параллельны. Докажите, что при
n нечетном оставшаяся пара сторон тоже
параллельна, а при
n четном оставшаяся пара сторон равна по длине.
Дан треугольник
ABC. Докажите, что существует
два семейства правильных треугольников, стороны которых
(или их продолжения) проходят через точки
A,
B и
C.
Докажите также, что центры треугольников этих семейств
лежат на двух концентрических окружностях.
Страница:
<< 1 2 3 [Всего задач: 14]