ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 57497

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.
Прислать комментарий     Решение


Задача 57498

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Докажите, что если треугольник ABC лежит внутри треугольника A'B'C', то  rABC < rA'B'C'.
Прислать комментарий     Решение


Задача 57499

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC сторона c наибольшая, а a наименьшая. Докажите, что  lc $ \leq$ ha.
Прислать комментарий     Решение


Задача 57500

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

Медианы AA1 и BB1 треугольника ABC перпендикулярны. Докажите, что  ctgA + ctgB $ \geq$ 2/3.
Прислать комментарий     Решение


Задача 57501

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 9

Через вершину A равнобедренного треугольника ABC с основанием AC проведена окружность, касающаяся стороны BC в точке M и пересекающая сторону AB в точке N. Докажите, что AN > CM.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .