Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]
Задача
64975
(#9.2)
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике ABC ∠B = 2∠C. Точки P и Q на серединном перпендикуляре к стороне CB таковы, что ∠CAP = ∠PAQ = ∠QAB = ⅓ ∠A.
Докажите, что Q – центр описанной окружности треугольника CPB.
Задача
64983
(#10.2)
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольник ABCD описан вокруг окружности, касающейся сторон AB, BC, CD, DA в точках K, L, M, N соответственно. Точки A', B', C', D' – середины отрезков LM, MN, NK, KL. Докажите, что четырёхугольник, образованный прямыми AA', BB', CC', DD', – вписанный.
Задача
65028
(#2)
|
|
Сложность: 3 Классы: 8,9
|
В треугольнике ABC со сторонами AB = 4, AC = 6 проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.
Задача
64968
(#8.3)
|
|
Сложность: 4- Классы: 8,9,10
|
Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно.
Докажите, что эти три перпендикуляра пересекаются в одной точке.
Задача
64976
(#9.3)
|
|
Сложность: 4 Классы: 9,10,11
|
Восстановите равнобедренный треугольник ABC (AB = AC) по точкам I, M, H пересечения биссектрис, медиан и высот соответственно.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]