ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65397  (#1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65401  (#2)

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9

Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Задача 65402  (#3)

Темы:   [ Теория алгоритмов (прочее) ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9

а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа?

б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа?

Прислать комментарий     Решение

Задача 65403  (#4)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 8,9,10,11

К натуральному числу  a > 1  приписали это же число и получили число b, кратное a². Найдите все возможные значения числа  b/a².

Прислать комментарий     Решение

Задача 65404  (#5)

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .