ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решить уравнение x³ – [x] = 3. ![]() ![]() Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать, что если он обратно поедет на трамвае, то он сможет уплатить за проезд без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.) ![]() ![]() ![]() Товарный поезд, отправившись из Москвы в x часов y минут, прибыл в Саратов в y часов z минут. Время в пути составило z часов x минут. ![]() ![]() |
Страница: 1 [Всего задач: 5]
Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC, γ = ∠C. Докажите, что c ≥ (a + b) sin γ/2.
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |