ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 7526]      



Задача 55759

Темы:   [ Касающиеся окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

Прислать комментарий     Решение


Задача 87460

Темы:   [ Четырехугольная пирамида ]
[ Усеченная пирамида ]
Сложность: 3
Классы: 10,11


В правильной усеченной четырехугольной пирамиде высота равна 2, а стороны оснований равны 3 и 5. Найдите диагональ усеченной пирамиды.

Прислать комментарий     Решение


Задача 87461

Темы:   [ Тела вращения ]
[ Объем круглых тел ]
Сложность: 3
Классы: 10,11


Основания трапеции равны 8 и 2. Углы, прилежащие к большему основанию, равны по 45o. Найдите объем тела, образованного вращением трапеции вокруг большего основания.

Прислать комментарий     Решение


Задача 87462

Темы:   [ Тетраэдр (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11


В правильную четырехугольную пирамиду вписан конус. Найдите отношение площади полной поверхности конуса к площади его боковой поверхности, если сторона основания пирамиды равна 4, а угол между высотой пирамиды и плоскостью боковой грани равен 30o.

Прислать комментарий     Решение


Задача 102206

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника.
Прислать комментарий     Решение


Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .