ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



Задача 88285  (#3.3)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7

После кризиса все цены поднялись на 25%. На сколько процентов меньше товаров можно купить на ту же зарплату?

Прислать комментарий     Решение

Задача 88286  (#3.4)

Темы:   [ Текстовые задачи (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?

Прислать комментарий     Решение

Задача 88287  (#3.5)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7

Существуют ли такие натуральные числа a и b, что дроби  a/b, a+1/b, a+1/b+1  несократимы?

Прислать комментарий     Решение

Задача 88288  (#3.6)

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7,8

Кащей Бессмертный загадывает три двузначных числа: a, b, c. Иван Царевич должен назвать ему три числа: X, Y, Z, после чего Кащей сообщает ему сумму aX + bY + cZ. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?
Прислать комментарий     Решение


Задача 88289  (#3.7)

Темы:   [ Куб ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 7,8

Можно ли расставить на ребрах куба числа от 1 до 12 так, чтобы все суммы чисел на гранях были одинаковыми?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .