ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N. ![]() ![]() Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников ABM, BCM, CDM и DAM образуют квадрат. ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 141]
На лужайке росли 35 жёлтых и белых одуванчиков. После того как восемь белых облетели, а два жёлтых побелели, жёлтых одуванчиков стало вдвое больше чем белых. Сколько белых и сколько жёлтых одуванчиков росло на лужайке вначале?
У учеников 5А класса было в сумме 2015 карандашей. Один из них потерял коробку с пятью карандашами, а вместо неё купил коробку, в которой 50 карандашей. Сколько теперь карандашей у учеников 5А класса?
Саша гостил у бабушки. В субботу он сел в поезд и приехал домой в понедельник. Саша заметил, что в этот понедельник число совпало с номером вагона, в котором он ехал, что номер его места в вагоне был меньше номера вагона и что в ту субботу, когда он садился в поезд, число было больше номера вагона. Какими были номера вагона и места?
На Солнечном острове живет 20 белых и 25 чёрных хамелеонов (хамелеоны – это животные, умеющие менять свой цвет). При встрече оба хамелеона меняют свой цвет на противоположный. Могут ли все хамелеоны окраситься в один цвет?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 141] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |