Страница: 1 [Всего задач: 4]
Задача
98041
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что при любом натуральном n
Даны две окружности, лежащие одна вне другой. Пусть A1 и A2 – наиболее удалённые друг от друга точки пересечения этих окружностей с их линией центров, так что A1 лежит на первой окружности, а A2 – на второй. Из точки A1 проведены два луча, касающиеся второй окружности, и построен круг K1, касающийся этих лучей и первой окружности изнутри.
Из точки A2 проведены два луча, касающиеся первой окружности,
и построен круг K2, касающийся этих лучей и второй окружности изнутри. Докажите, что круги K1 и K2 равны.
Задача
98043
(#3)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли
сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал
кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам
куба, всего 27 столбиков.)
Задача
98044
(#4)
|
|
Сложность: 4 Классы: 8,9
|
Дана 61 монета одинакового внешнего вида. Известно, что две из них –
фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Определить фальшивые монеты не требуется.)
Страница: 1 [Всего задач: 4]