ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Информатика
>>
Книги, журналы
>>
Беров В., Лапунов А., Матюхин В., Пономарев А., Особенности национальных задач по информатике
главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что все грани тетраэдра равны (равногранный тетраэдр) тогда и только тогда, когда отрезки, соединяющие середины противоположных рёбер, попарно перпендикулярны. Решение Игровое поле представляет собой N кружков, некоторые из которых соединены отрезками. Каждому кружку приписана какая-то стоимость, а на каждом отрезке поставлена стрелка. Один из кружков является начальным, другой – конечным. Игрок должен переместить фишку из начального кружка в конечный, пройдя по каждому из отрезков ровно один раз. За перемещение по отрезку он получает определенное количество очков, равное стоимости кружка, в который он перемещается, взятой со знаком плюс, если движение происходит по направлению стрелки, и со знаком минус – если в противоположном. Требуется определить максимальное количество очков, которое может
набрать игрок в этой игре.
|
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 67]
Входные данные Во входном файле содержатся (в указанном порядке) целое число N (1 ≤ N ≤ 30) и N пар вещественных чисел, задающих координаты точек. Числа разделяются пробелами и/или символами перевода строки. Выходные данные Первая строка выходного файла должна содержать минимально возможное значение суммарной площади. В каждую из следующих K строк запишите тройку номеров вершин, образующих очередной из треугольников. Номера вершин разделяются пробелом. Пример входного файла 6 0 0 1 0 10 0 0 2 12 0 10 1 Пример выходного файла 2 1 2 4 3 5 6
Требуется определить максимальное количество очков, которое может
набрать игрок в этой игре.
взять число из одного сектора; взять число, равное сумме двух или более чисел в смежных секторах. Из новых чисел составляется наибольшая последовательность подряд идущих чисел, начинающаяся с числа M: (M, M+1, M+2, ..., I). Пример на рисунке показывает, как получить все новые числа от 2 до 21 для приведенных на нем чисел в секторах. Серым цветом выделены суммируемые числа.
А) Многоугольники выпуклые, а координаты их вершин даны в произвольном порядке. Б) Хотя бы один из многоугольников невыпуклый, но известно, что у каждого из многоугольников не более одного угла, большего 180 градусов, а координаты вершин даны в порядке обхода по часовой стрелке. Ваша программа по входным данным должна сама определить, какой из этих двух случаев имеет место. Входные данные Первая строка входного файла содержит целое число N – количество вершин в первом многоугольнике (3 ≤ N ≤ 50). Во второй строке записаны координаты этих вершин. Третья и четвертая строки таким же образом задают второй многоугольник. Координаты всех вершин являются целыми числами из диапазона [-32768, 32767]. Выходные данные Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами. Пример входного файла 3 0 3 0 -3 -3 0 5 -1 1 2 1 1 0 2 -1 -1 -1 Пример выходного файла 2.0
Входные данные В первой строке входного файла находится целое число N (1 ≤ N ≤ 20). В каждой из последующих N строк записана тройка вещественных чисел, описывающих очередную из окружностей. Первые два числа задают координаты ее центра, третье – радиус. Выходные данные Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами. Пример входного файла 2 0 0 1 1 1 1 Пример выходного файла 0.570796
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 67] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|