ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной? ![]() ![]() Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α . ![]() ![]() ![]() Клетки доски m×n покрашены в два цвета. Известно, что на какую бы клетку ни поставить ладью, она будет бить больше клеток не того цвета, на котором стоит (клетка под ладьей тоже считается побитой). Докажите, что на каждой вертикали и каждой горизонтали клеток обоих цветов поровну. ![]() ![]() ![]() Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник. ![]() ![]() ![]() У семи Чебурашек есть по два воздушных шарика: красный и жёлтый. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 7]
Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу?
У семи Чебурашек есть по два воздушных шарика: красный и жёлтый.
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |