ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 88297  (#5.1)

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?
Прислать комментарий     Решение


Задача 88298  (#5.2)

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8

Решить уравнение  x8 + 4x4 + x² + 1 = 0.

Прислать комментарий     Решение

Задача 88299  (#5.3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 7,8

Давным-давно девять одинаковых книг стоили 11 рублей с копейками, а тринадцать таких книг стоили 15 рублей с копейками.
Сколько стоила одна книга?

Прислать комментарий     Решение

Задача 104080  (#5.4)

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2-
Классы: 5,6,7

Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

Прислать комментарий     Решение

Задача 88301  (#5.5)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Объем параллелепипеда ]
Сложность: 2-
Классы: 5,6,7

Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .