ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 105052

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

В шахматном турнире каждый участник сыграл с каждым из остальных две партии: одну белыми фигурами, другую – чёрными. По окончании турнира оказалось, что все участники набрали одинаковое количество очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков). Докажите, что найдутся два участника, выигравшие одинаковое число партий белыми.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .