ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии? ![]() |
Страница: 1 2 >> [Всего задач: 6]
Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии?
Даны шесть слов:
На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.)
В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Лёша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Считается, что он отгадал, если одну цифру он назвал правильно, а в другой ошибся не более чем на единицу (например, если задумано число 65, то 65, 64 и 75 подходят, а 63, 76 и 56 – нет). Придумайте способ, гарантирующий Грише успех за 22 попытки (какое бы число ни задумал Лёша).
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |