ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Есть длинный ряд луночек. В трёх из них лежит по шарику. Игроки по очереди делают ход: берут один из крайних шариков и перекладывают в свободную луночку между двумя другими. Тот, кто не может сделать ход, считается проигравшим. Кто – начинающий игру или ходящий вторым – победит при правильной игре при показанных на рисунках первоначальных расположениях шариков?

  а)  

  б)  

  в)  

  г) Разберите общий случай: между крайними шариками и средним имеется N и K пустых луночек.

Вниз   Решение


На листке бумаги написаны натуральные числа от 1 до N. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода.
  а) Кто – начинающий игру или ходящий вторым – победит при  N = 10?
  б) А при  N = 12?
  в) А при  N = 15?
  г) А при  N = 30?

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;   б) по 3 монеты;  в) по 4 монеты;
г) по 5 монет;   д) по 6 монет;   е) по 7 монет?
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 107703  (#1)

Темы:   [ Упаковки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;   б) по 3 монеты;  в) по 4 монеты;
г) по 5 монет;   д) по 6 монет;   е) по 7 монет?
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.
Прислать комментарий     Решение


Задача 107704  (#2)

Темы:   [ Формула включения-исключения ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7,8

В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные знают все буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников – слово "рот", а остальных – слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали своё слово верно?

Прислать комментарий     Решение

Задача 107705  (#3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 2+
Классы: 6,7,8

Лёша и Ира живут в доме, на каждом этаже которого 9 квартир (в доме один подъезд). Номер этажа Лёши равен номеру квартиры Иры, а сумма номеров их квартир равна 329. Каков номер квартиры Лёши?

Прислать комментарий     Решение

Задача 107706  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?

Прислать комментарий     Решение

Задача 107707  (#5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 6,7,8

Разрежьте данный квадрат по сторонам клеток на четыре части так, чтобы все части были одинакового размера и одинаковой формы и чтобы каждая часть содержала по одному кружку и по одной звёздочке.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .