ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 23]      



Задача 107867

Темы:   [ Четность и нечетность ]
[ Поворот и винтовое движение ]
[ Двумерные поверхности ]
Сложность: 5
Классы: 9,10,11

Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
  для простоты шестёренки считаются кругами;
  шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
  угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
  первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.

Прислать комментарий     Решение

Задача 107861

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 5+
Классы: 8,9,10,11

Автор: Шень А.Х.

На пол положили правильный треугольник ABC, выпиленный из фанеры. В пол вбили три гвоздя (по одному вплотную к каждой стороне треугольника) так, что треугольник невозможно повернуть, не отрывая от пола. Первый гвоздь делит сторону AB в отношении 1 : 3, считая от вершины A, второй делит сторону BC в отношении 2 : 1, считая от вершины B. В каком отношении делит сторону AC третий гвоздь?
Прислать комментарий     Решение


Задача 107862

Темы:   [ Задачи с ограничениями ]
[ Вспомогательная раскраска (прочее) ]
[ Обратный ход ]
[ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
Сложность: 5+
Классы: 8,9,10

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .