ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть M – точка пересечения медиан треугольника ABC . На перпендикулярах, опущенных из M на стороны BC , AC и AB , взяты точки A1 , B1 и C1 соответственно, причём A1B1 MC и A1C1 MB . Докажите, что точка M является точкой пересечения медиан и в треугольнике A1B1C1 .

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 25]      



Задача 105168

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4+
Классы: 8,9,10

Дано равенство  (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1),  где a, n, l и все показатели степени – натуральные числа, причём  a > 1.
Найдите все возможные значения числа a.

Прислать комментарий     Решение

Задача 105165

Темы:   [ Принцип крайнего (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 4+
Классы: 9,10,11

По периметру круглого торта диаметром n/p метров расположены n вишенок. Если на концах некоторой дуги находятся вишенки, то количество остальных вишенок на этой дуге меньше, чем длина дуги в метрах. Докажите, что торт можно разрезать на n равных секторов так, что в каждом куске будет по вишенке.
Прислать комментарий     Решение


Задача 108095

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Поворот на $90^\circ$ ]
Сложность: 5-
Классы: 8,9

Пусть M – точка пересечения медиан треугольника ABC . На перпендикулярах, опущенных из M на стороны BC , AC и AB , взяты точки A1 , B1 и C1 соответственно, причём A1B1 MC и A1C1 MB . Докажите, что точка M является точкой пересечения медиан и в треугольнике A1B1C1 .
Прислать комментарий     Решение


Задача 105155

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 5
Классы: 8,9,10

В тюрьму поместили 100 узников. Надзиратель сказал им:
"Я дам вам вечер поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Иногда я буду одного из вас отводить в комнату, в которой есть лампа (вначале она выключена). Уходя из комнаты, вы можете оставить лампу как включенной, так и выключенной.

Если в какой-то момент кто-то из вас скажет мне, что вы все уже побывали в комнате, и будет прав, то я всех вас выпущу на свободу. А если неправ - скормлю всех крокодилам. И не волнуйтесь, что кого-нибудь забудут - если будете молчать, то все побываете в комнате, и ни для кого никакое посещение комнаты не станет последним."

Придумайте стратегию, гарантирующую узникам освобождение.
Прислать комментарий     Решение


Задача 105166

Темы:   [ Двугранный угол ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Проектирование помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Полярный трехгранный угол ]
[ Неравенства с трехгранными углами ]
Сложность: 6
Классы: 10,11

У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .