ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри острого угла XOY взяты точки M и N, причём  ∠XON = ∠YOM.  На луче OX отмечена точка Q так, что  ∠NQO = ∠MQX,  а на луче OY – точка P так, что  ∠NPO = ∠MPY.  Докажите, что длины ломаных MPN и MQN равны.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107821

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.

Прислать комментарий     Решение

Задача 107822

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

От вулканостанции до вершины вулкана Стромболи надо идти 4 часа по дороге, а затем – 4 часа по тропинке. На вершине расположено два кратера. Первый кратер 1 час извергается, потом 17 часов молчит, потом опять 1 час извергается, и т.д. Второй кратер 1 час извергается, 9 часов молчит, 1 час извергается, и т.д. Во время извержения первого кратера опасно идти и по тропинке, и по дороге, а во время извержения второго опасна только тропинка. Ваня увидел, что ровно в 12 часов оба кратера начали извергаться одновременно. Сможет ли он когда-нибудь подняться на вершину вулкана и вернуться назад, не рискуя жизнью?

Прислать комментарий     Решение

Задача 107825

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8,9

В ромбе ABCD величина угла B равна 40°, E – середина BC, F – основание перпендикуляра, опущенного из A на DE. Найдите величину угла DFC.

Прислать комментарий     Решение

Задача 108168

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 3+
Классы: 8,9

Внутри острого угла XOY взяты точки M и N, причём  ∠XON = ∠YOM.  На луче OX отмечена точка Q так, что  ∠NQO = ∠MQX,  а на луче OY – точка P так, что  ∠NPO = ∠MPY.  Докажите, что длины ломаных MPN и MQN равны.

Прислать комментарий     Решение

Задача 107824

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

а) Докажите, что существует натуральное число, которое при замене любой тройки соседних цифр на произвольную тройку остаётся составным.
б) Существует ли такое 1997-значное число?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .