ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание: Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите SA + SB + SC – S. Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты. Решение |
Страница: 1 2 >> [Всего задач: 7]
Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.
Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?
Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание: Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите SA + SB + SC – S. Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.
Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин. а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|