ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Источники:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Карасев Р.

На плоскости дано бесконечное множество точек S , при этом в любом квадрате 1×1 лежит конечное число точек из множества S . Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняются неравенства:

|XA|,|XB| 0,999|AB|.

Вниз   Решение


Найдите наибольшее значение функции y = 8x-7 sin x+7 на отрезке [-;0] .

Вверх   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1942]      



Задача 112380

Темы:   [ ЕГЭ ]
[ 4.2.1 ]
[ 3.2 ]
[ 3.3 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = 8x-7 sin x+7 на отрезке [-;0] .
Прислать комментарий     Решение


Задача 112381

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = 14x-7tgx-3,5π +11 на отрезке [-;] .
Прислать комментарий     Решение


Задача 112382

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите точку минимума функции y = (x+11)ex-11 .
Прислать комментарий     Решение


Задача 112383

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наименьшее значение функции y = 4x-ln (x+8)4 на отрезке [-7,5;0] .
Прислать комментарий     Решение


Задача 112384

Темы:   [ 3.2 ]
[ 3.3 ]
[ 4.2.1 ]
Сложность: 2
Классы: 11

Найдите наибольшее значение функции y = ln (x+5)5-5x на отрезке [-4,5;0] .
Прислать комментарий     Решение


Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1942]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .