ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?
(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 116044  (#6)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Автор: Ивлев Ф.

В остроугольном треугольнике ABC на высоте BH выбрана произвольная точка P. Точки A' и C' – середины сторон BC и AB соответственно. Перпендикуляр, опущенный из A' на CP, пересекается с перпендикуляром, опущенным из C' на AP, в точке K. Докажите, что точка K равноудалена от точек A и C.

Прислать комментарий     Решение

Задача 116045  (#7)

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 5
Классы: 8,9,10

За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?
(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .