Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2+ Классы: 10,11
|
Существуют ли два таких четырехугольника,
что стороны первого меньше соответствующих сторон второго,
а соответствующие диагонали больше?
|
|
Сложность: 3 Классы: 10,11
|
Трапеция ABCD и параллелограмм MBDK
расположены так, что стороны параллелограмма параллельны
диагоналям трапеции (см. рис.). Докажите, что площадь серой
части равна сумме площадей черных частей.
|
|
Сложность: 4- Классы: 10,11
|
В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.
|
|
Сложность: 4 Классы: 10,11
|
На медианах треугольника как на диаметрах построены три окружности. Известно, что они попарно пересекаются. Пусть C1 – более удалённая от вершины C точка пересечения окружностей, построенных на медианах AM1 и BM2. Точки A1 и B1 определяются аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной
точке.
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что у любого выпуклого многогранника найдутся три
ребра, из которых можно составить треугольник.
Страница: 1
2 >> [Всего задач: 6]