ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ. ![]() ![]() Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q. ![]() ![]() ![]() В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что ∠ADB = ∠ADC = ∠BDC. ![]() ![]() |
Страница: 1 [Всего задач: 1]
В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что ∠ADB = ∠ADC = ∠BDC.
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |