ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма 123 чисел равна 3813. Доказать, что из этих чисел можно выбрать 100 с суммой не меньше 3100.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 810]      



Задача 35310

Темы:   [ Системы линейных уравнений ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 8,9

Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

Прислать комментарий     Решение

Задача 35311

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 8,9,10

Доказать, что в последовательности 11, 111, 1111, 11111, ... нет точных квадратов.

Прислать комментарий     Решение

Задача 35323

Темы:   [ Турниры и турнирные таблицы ]
[ Соображения непрерывности ]
Сложность: 3-
Классы: 7,8

Матч Бавария – Спартак окончился со счетом  5 : 8.  Докажите, что в матче был такой момент, когда Спартаку оставалось забить столько мячей, сколько Бавария уже забила к этому времени.

Прислать комментарий     Решение

Задача 35332

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 7,8,9

Сумма 123 чисел равна 3813. Доказать, что из этих чисел можно выбрать 100 с суммой не меньше 3100.

Прислать комментарий     Решение

Задача 35344

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 3-
Классы: 8,9

Докажите, что если a, b, c – нечётные числа, то хотя бы одно из чисел  ab – 1,  bc – 1,  ca – 1  делится на 4.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .