ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD. Решение |
Страница: << 1 2 [Всего задач: 9]
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Докажите, что прямая, проведенная из точки P перпендикулярно BC, делит сторону AD пополам.
б) Четырехугольник KLMN вписанный и описанный одновременно; A и B — точки касания вписанной окружности со сторонами KL и LM. Докажите, что AK . BM = r2, где r — радиус вписанной окружности.
Страница: << 1 2 [Всего задач: 9] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|