ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Докажите, что середины сторон четырехугольника ABCD и проекции точки P на стороны лежат на одной окружности.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 104]      



Задача 56616  (#02.073)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Из вершин A и B опущены перпендикуляры на CD, пересекающие прямые BD и AC в точках K и L соответственно. Докажите, что AKLB — ромб.
Прислать комментарий     Решение


Задача 56617  (#02.074)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что площадь четырехугольника ABCD равна  (AB . CD + BC . AD)/2.
Прислать комментарий     Решение


Задача 56618  (#02.075)

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 56619  (#02.076)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 4
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей.
Докажите, что прямая, проведенная из точки P перпендикулярно BC, делит сторону AD пополам.
Прислать комментарий     Решение


Задача 56620  (#02.077)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 4
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Докажите, что середины сторон четырехугольника ABCD и проекции точки P на стороны лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 104]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .