ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Стороны AB и CD параллелограмма ABCD площади 1 разбиты на n равных частей, AD и BC — на m равных частей.
а) Точки деления соединены так, как показано на рис., а.
б) Точки деления соединены так, как показано на рис., б.
Чему равны площади образовавшихся при этом маленьких параллелограммов?


Вниз   Решение


На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Вверх   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1956]      



Задача 53412  (#05.000.2)

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что биссектрисы треугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 56828  (#05.000.3)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 2-
Классы: 7,8

На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

Прислать комментарий     Решение

Задача 56829  (#05.000.4)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 7,8

На сторонах  AB, BC, CA правильного треугольника ABC взяты точки P, Q, R так, что  AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.

Прислать комментарий     Решение

Задача 56830  (#05.001)

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 7,8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.
Прислать комментарий     Решение


Задача 56831  (#05.002)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8

Пусть Oa, Ob и Oc — центры вневписанных окружностей треугольника ABC. Докажите, что точки A, B и C — основания высот треугольника OaObOc.
Прислать комментарий     Решение


Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .