ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки A1 и A2, B1 и B2, C1 и C2 лежат на сторонах BC, CA, AB треугольника ABC. а) Докажите, что если эти точки являются точками пересечения сторон треугольника ABC с продолжениями сторон треугольника A'B'C', полученного из треугольника ABC при гомотетии с центром в точке Лемуана K, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности (окружность Тукера). б) Докажите, что если отрезки A1B2, B1C2 и C1A2 равны и антипараллельны сторонам AB, BC и CA, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности. Решение |
Страница: << 1 2 3 4 >> [Всего задач: 17]
а) Докажите, что если эти точки являются точками пересечения сторон треугольника ABC с продолжениями сторон треугольника A'B'C', полученного из треугольника ABC при гомотетии с центром в точке Лемуана K, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности (окружность Тукера). б) Докажите, что если отрезки A1B2, B1C2 и C1A2 равны и антипараллельны сторонам AB, BC и CA, то точки A1, B2, B1, C2, C1, A2 лежат на одной окружности.
б) Через точку Лемуана K проведены прямые, антипараллельные сторонам треугольника. Докажите, что точки их пересечения со сторонами треугольника лежат на одной окружности (вторая окружность Лемуана).
Страница: << 1 2 3 4 >> [Всего задач: 17] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|