ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 57144

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что:
а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC;
б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник.
Прислать комментарий     Решение


Задача 57145

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.
Прислать комментарий     Решение


Задача 57146

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Треугольник ABC правильный, M — некоторая точка. Докажите, что если числа AM, BM и CM образуют геометрическую прогрессию, то знаменатель этой прогрессии меньше 2.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .