ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

Вниз   Решение


Назовём точку на плоскости узлом, если обе её координаты целые числа. Дан треугольник с вершинами в узлах, внутри него расположено не меньше двух узлов. Докажите, что среди узлов внутри треугольника можно выбрать такие два узла, что проходящая через них прямая содержит одну из вершин треугольника или параллельна одной из сторон треугольника.

ВверхВниз   Решение


Докажите, что  cos 2$ \alpha$ + cos 2$ \beta$ - cos 2$ \gamma$ $ \leq$ 3/2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57455

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что 1 - sin($ \alpha$/2) $ \geq$ 2 sin($ \beta$/2)sin($ \gamma$/2).
Прислать комментарий     Решение


Задача 57456

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).
Прислать комментарий     Решение


Задача 57457

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Докажите, что если a + b < 3c, то  tg($ \alpha$/2)tg($ \beta$/2) < 1/2.
Прислать комментарий     Решение


Задача 57458

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Пусть  $ \alpha$,$ \beta$,$ \gamma$ — углы остроугольного треугольника. Докажите, что если  $ \alpha$ < $ \beta$ < $ \gamma$, то  sin 2$ \alpha$ > sin 2$ \beta$ > sin 2$ \gamma$.
Прислать комментарий     Решение


Задача 57459

Тема:   [ Неравенства для углов треугольника ]
Сложность: 5
Классы: 9

Докажите, что  cos 2$ \alpha$ + cos 2$ \beta$ - cos 2$ \gamma$ $ \leq$ 3/2.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .