ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57455

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что 1 - sin($ \alpha$/2) $ \geq$ 2 sin($ \beta$/2)sin($ \gamma$/2).
Прислать комментарий     Решение


Задача 57456

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).
Прислать комментарий     Решение


Задача 57457

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Докажите, что если a + b < 3c, то  tg($ \alpha$/2)tg($ \beta$/2) < 1/2.
Прислать комментарий     Решение


Задача 57458

Тема:   [ Неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

Пусть  $ \alpha$,$ \beta$,$ \gamma$ — углы остроугольного треугольника. Докажите, что если  $ \alpha$ < $ \beta$ < $ \gamma$, то  sin 2$ \alpha$ > sin 2$ \beta$ > sin 2$ \gamma$.
Прислать комментарий     Решение


Задача 57459

Тема:   [ Неравенства для углов треугольника ]
Сложность: 5
Классы: 9

Докажите, что  cos 2$ \alpha$ + cos 2$ \beta$ - cos 2$ \gamma$ $ \leq$ 3/2.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .