ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

Вниз   Решение


Петя прибавил к натуральному числу N натуральное число M и заметил, что сумма цифр у результата та же, что и у N. Тогда он снова прибавил M к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у N?

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.

ВверхВниз   Решение


а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57888

Тема:   [ Композиции симметрий ]
Сложность: 3
Классы: 9

а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.
Прислать комментарий     Решение


Задача 57889

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Докажите, что композиция симметрий ScoSboSa является симметрией относительно некоторой прямой тогда и только тогда, когда данные прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57890

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).
Прислать комментарий     Решение


Задача 57891

Тема:   [ Композиции симметрий ]
Сложность: 4
Классы: 9

Пусть l3 = Sl1(l2). Докажите, что Sl3 = Sl1oSl2oSl1.
Прислать комментарий     Решение


Задача 57892

Темы:   [ Композиции симметрий ]
[ Три прямые, пересекающиеся в одной точке ]
[ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что  A2B2 || AB  и прямые AA2, BB2 и CC2 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .