ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 19. Гомотетия и поворотная гомотетия
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда H1oH2(A) = H2oH1(A) для некоторой точки A. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 66]
б) Докажите, что центры правильных треугольников, построенных внешним (внутренним) образом на сторонах треугольника ABC, образуют правильный треугольник.
а) Докажите, что описанные окружности треугольников A1A2P3, A1A3P2 и A2A3P1 пересекаются в одной точке, лежащей на окружности подобия отрезков A1B1, A2B2 и A3B3. б) Пусть O1 — центр поворотной гомотетии, переводящей отрезок A2B2 в отрезок A3B3; точки O2 и O3 определяются аналогично. Докажите, что прямые P1O1, P2O2 и P3O3 пересекаются в одной точке, лежащей на окружности подобия отрезков A1B1, A2B2 и A3B3.
а) Докажите, что точка W лежит на окружности подобия фигур F1, F2 и F3. б) Пусть J1, J2 и J3 — точки пересечения прямых l1, l2 и l3 с окружностью подобия, отличные от точки W. Докажите, что эти точки зависят только от фигур F1, F2 и F3 и не зависят от выбора прямых l1, l2 и l3.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 66] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|