ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Вниз   Решение


Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите объём пирамиды.

ВверхВниз   Решение


Гипотенуза прямоугольного треугольника равна a, один из острых углов равен α.
Найдите расстояния от основания высоты, опущенной на гипотенузу, до катетов треугольника.

ВверхВниз   Решение


Докажите, что следующие свойства выпуклого многоугольника F эквивалентны: 1) F имеет центр симметрии; 2) F можно разрезать на параллелограммы.

ВверхВниз   Решение


Докажите, что если выпуклый многоугольник можно разрезать на центрально симметричные многоугольники, то он имеет центр симметрии.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58241  (#25.001.1)

Тема:   [ Разрезания на параллелограммы ]
Сложность: 6
Классы: 8,9

Докажите, что следующие свойства выпуклого многоугольника F эквивалентны: 1) F имеет центр симметрии; 2) F можно разрезать на параллелограммы.
Прислать комментарий     Решение


Задача 58242  (#25.002.1)

Тема:   [ Разрезания на параллелограммы ]
Сложность: 6
Классы: 8,9

Докажите, что если выпуклый многоугольник можно разрезать на центрально симметричные многоугольники, то он имеет центр симметрии.
Прислать комментарий     Решение


Задача 58243  (#25.003.1)

Тема:   [ Разрезания на параллелограммы ]
Сложность: 6
Классы: 8,9

Докажите, что любой правильный 2n-угольник можно разрезать на ромбы.
Прислать комментарий     Решение


Задача 58244  (#25.004.1)

Тема:   [ Разрезания на параллелограммы ]
Сложность: 6
Классы: 8,9

Правильный восьмиугольник со стороной 1 разрезан на параллелограммы. Докажите, что среди них есть по крайней мере два прямоугольника, причем сумма площадей всех прямоугольников равна 2.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .