Страница:
<< 1 2 [Всего задач: 9]
Задача
58345
(#28.027)
|
|
Сложность: 5 Классы: 9,10,11
|
Через точки
A и
B проведены окружности
S1 и
S2,
касающиеся окружности
S, и окружность
S3, перпендикулярная
S.
Докажите, что
S3 образует равные углы с окружностями
S1 и
S2.
Задача
58346
(#28.028)
|
|
Сложность: 5 Классы: 9,10,11
|
Две окружности, пересекающиеся в точке
A, касаются окружности (или
прямой)
S1 в точках
B1 и
C1, а окружности (или прямой)
S2
в точках
B2 и
C2 (причем касание в
B2 и
C2 такое же,
как в
B1 и
C1). Докажите, что окружности, описанные вокруг
треугольников
AB1C1 и
AB2C2, касаются друг друга.
Задача
58347
(#28.028.1)
|
|
Сложность: 5 Классы: 9,10,11
|
Окружность
SA проходит через точки
A и
C; окружность
SB проходит через точки
B и
C; центры обеих окружностей
лежат на прямой
AB. Окружность
S касается окружностей
SA
и
SB, а кроме того, она касается отрезка
AB в точке
C1.
Докажите, что
CC1 — биссектриса треугольника
ABC.
Задача
58348
(#28.029)
[Теорема Фейербаха]
|
|
Сложность: 7 Классы: 9,10,11
|
а) Докажите, что окружность, проходящая через середины сторон
треугольника, касается его вписанной и трех
вневписанных окружностей (Фейербах).
б) На сторонах
AB и
AC треугольника
ABC взяты точки
C1 и
B1 так, что
AC1 =
B1C1 и вписанная окружность
S треугольника
ABC является
вневписанной окружностью треугольника
AB1C1. Докажите, что вписанная
окружность треугольника
AB1C1 касается окружности, проходящей через
середины сторон треугольника
ABC.
Страница:
<< 1 2 [Всего задач: 9]