ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то
(b - a)/(c - a) = (b' - a')/(c' - a').
![]() ![]() Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске? ![]() ![]() ![]() Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
![]() ![]() |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
(b - a)/(c - a) = (b' - a')/(c' - a').
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Страница: 1 2 3 4 5 >> [Всего задач: 22] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |