ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть ABCDEF — описанный шестиугольник. Докажите, что его диагонали AD, BE и CF пересекаются в одной точке (Брианшон).

   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 58447

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Даны окружность S, прямая l, точка M, лежащая на S и не лежащая на l, и точка O, не лежащая на S. Рассмотрим преобразование P прямой l, являющееся композицией проектирования l на S из M, S на себя из O и S на l из M, т. е. P(A) — пересечение прямых l и MC, где C — отличная от B точка пересечения S с прямой OB, а B — отличная от A точка пересечения S с прямой MA. Докажите, что преобразование P проективно.
Прислать комментарий     Решение


Задача 58448

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Даны окружность S, точка P, расположенная вне S, и прямая l, проходящая через P и пересекающая окружность в точках A и B. Точку пересечения касательных к окружности в точках A и B обозначим через K.
а) Рассмотрим всевозможные прямые, проходящие через P и пересекающие AK и BK в точках M и N. Докажите, что геометрическим местом точек пересечения отличных от AK и BK касательных к S, проведенных из точек M и N, является некоторая прямая, проходящая через K, из которой выкинуто ее пересечение с внутренностью S.
б) Будем на окружности разными способами выбирать точку R и проводить прямую, соединяющую отличные от R точки пересечения прямых RK и RP с S. Докажите, что все полученные прямые проходят через одну точку, и эта точка лежит на l.
Прислать комментарий     Решение


Задача 58449

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Вневписанная окружность треугольника ABC касается стороны BC в точке D, а продолжений сторон AB и AC — в точках E и F. Пусть T — точка пересечения прямых BF и CE. Докажите, что точки A, D и T лежат на одной прямой.
Прислать комментарий     Решение


Задача 58450

 [Теорема Брианшона]
Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Пусть ABCDEF — описанный шестиугольник. Докажите, что его диагонали AD, BE и CF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Задача 58453

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Точки A, B, C и D лежат на окружности, SA и SD — касательные к этой окружности, P и Q — точки пересечения прямых AB и CD, AC и BD соответственно. Докажите, что точки P, Q и S лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .