ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 31. Эллипс, парабола, гипербола
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть AA' и BB' — сопряженные диаметры эллипса с центром O. Проведем через точку B перпендикуляр к прямой OA и отложим на нем отрезки BP и BQ, равные OA. Докажите, что главные оси эллипса являются биссектрисами углов между прямыми OP и OQ. б) На плоскости нарисована пара сопряженных диаметров эллипса. С помощью циркуля и линейки постройте его оси. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84]
б) Даны точка F и прямая l. Докажите, что множество точек X, для которых отношение расстояния от X до F к расстоянию от X до l равно постоянному числу e < 1, — эллипс.
б) На плоскости нарисована пара сопряженных диаметров эллипса. С помощью циркуля и линейки постройте его оси.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|