ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите равенства
  а)  [1, 2,..., 2n] = [n + 1, n + 2, ..., 2n];
  б)  (a1, a2, ..., an) = (a1, (a2, ..., an));
  в)  [a1, a2, ..., an] = [a1, [a2, ..., an]].

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1255]      



Задача 60519  (#03.067)

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все взаимно простые a и b, для которых   = 3/13.

Прислать комментарий     Решение

Задача 60520  (#03.068)

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Докажите, что если  (a1, a2, ..., an) = 1,  то уравнение  a1x1 + a2x2 + ... + anxn = 1  разрешимо в целых числах.

Прислать комментарий     Решение

Задача 60521  (#03.069)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9,10

Докажите равенства
  а)  [1, 2,..., 2n] = [n + 1, n + 2, ..., 2n];
  б)  (a1, a2, ..., an) = (a1, (a2, ..., an));
  в)  [a1, a2, ..., an] = [a1, [a2, ..., an]].

Прислать комментарий     Решение

Задача 60522  (#03.070)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Инварианты и полуинварианты (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 4
Классы: 9,10,11

На доске написано n натуральных чисел. За одну операцию вместо двух чисел, не делящих друг друга, можно написать их наибольший общий делитель и их наименьшее общее кратное.
  а) Докажите, что можно провести только конечное число операций.
  б) Финальный результат независимо от порядка действий будет одним и тем же. Например:
    (4, 6, 9) → (2, 12, 9) → (2, 3, 36) → (1, 6, 36),
    (4, 6, 9) → (4, 3, 18) → (1, 12, 18) → (1, 6, 36).

Прислать комментарий     Решение

Задача 60523  (#03.071)

Тема:   [ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Найдите наименьшее c, при котором
  а) уравнение  7x + 9y = c  имело бы ровно шесть натуральных решений;
  б) уравнение  14x + 11y = c  имело бы ровно пять натуральных решений.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .