ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by. ![]() |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1255]
В каких пределах должно заключаться c, чтобы уравнение 19x + 14y = c имело шесть натуральных решений?
Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by.
Пусть натуральные числа $a$ и $b$ взаимно просты. Докажите, что для того, чтобы уравнение $ax + by = c$ имело ровно $n$ целых положительных решений, значение $c$ должно находиться в пределах $(n - 1) \cdot ab + a + b \leqslant c \leqslant (n + 1) \cdot ab.$
Отметим на прямой красным цветом все точки вида 81x + 100y, где x, y – натуральные, и синим цветом –
остальные целые точки.
Найдите все двузначные числа, квадрат которых равен кубу суммы их цифр.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |