ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 60659  (#04.033)

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Решите в целых числах уравнения:
  а)  3x² + 5y² = 345;
  б)  1 + x + x² + x³ = 2y.

Прислать комментарий     Решение

Задача 60660  (#04.034)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

Прислать комментарий     Решение

Задача 60661  (#04.035)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9,10

Назовём шестизначное число счастливым, если сумма его первых трёх цифр равна сумме последних трёх цифр. Докажите, что сумма всех счастливых чисел делится на 13. (Числа, записываемые менее, чем шестью цифрами, в этой задаче также считаются шестизначными.)

Прислать комментарий     Решение

Задача 60662  (#04.036)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.

Прислать комментарий     Решение

Задача 60663  (#04.037)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  77777 – 7777  делится на 10.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .