ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

   Решение

Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1255]      



Задача 60828  (#04.202)

Темы:   [ Деление с остатком ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 7,8,9,10

На столе лежат книги, которые надо упаковать. Если их связать в одинаковые пачки по 4, по 5 или по 6 книг, то каждый раз останется одна лишняя книга, а если связать по 7 книг в пачку, то лишних книг не останется. Какое наименьшее количество книг может быть на столе?

Прислать комментарий     Решение

Задача 60829  (#04.203)

Темы:   [ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 4
Классы: 8,9,10

Найдите остаток от деления числа 1000! на 10250.

Прислать комментарий     Решение

Задача 60830  (#04.204)

Темы:   [ Деление с остатком ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 8,9,10

Найдите такое наименьшее чётное натуральное число a, что  a + 1  делится на 3,  a + 2  – на 5,  a + 3  – на 7,  a + 4  – на 11,  a + 5  – на 13.

Прислать комментарий     Решение

Задача 60831  (#04.205)

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

Прислать комментарий     Решение

Задача 60832  (#04.206)

 [Китайская теорема об остатках и функция Эйлера]
Темы:   [ Функция Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 9,10,11

Докажите, что число x является элементом приведённой системы вычетов тогда и только тогда, когда числа a1, ..., an, определённые сравнениями
x ≡ a1 (mod m1),  ..., x ≡ an (mod mn)  принадлежат приведённым системам вычетов по модулям m1, ..., mn соответственно. Выведите отсюда мультипликативность функции Эйлера.

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .