ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 60830  (#04.204)

Темы:   [ Деление с остатком ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 8,9,10

Найдите такое наименьшее чётное натуральное число a, что  a + 1  делится на 3,  a + 2  – на 5,  a + 3  – на 7,  a + 4  – на 11,  a + 5  – на 13.

Прислать комментарий     Решение

Задача 60831  (#04.205)

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

Прислать комментарий     Решение

Задача 60832  (#04.206)

 [Китайская теорема об остатках и функция Эйлера]
Темы:   [ Функция Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 4-
Классы: 9,10,11

Докажите, что число x является элементом приведённой системы вычетов тогда и только тогда, когда числа a1, ..., an, определённые сравнениями
x ≡ a1 (mod m1),  ..., x ≡ an (mod mn)  принадлежат приведённым системам вычетов по модулям m1, ..., mn соответственно. Выведите отсюда мультипликативность функции Эйлера.

Прислать комментарий     Решение

Задача 60833  (#04.207)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Предположим, что числа m1, ..., mn попарно взаимно просты. Докажите, что любую правильную дробь вида     можно представить в виде алгебраической суммы правильных дробей вида ni/mi  (i = 1, ..., n).

Прислать комментарий     Решение

Задача 60834  (#04.208)

Темы:   [ Китайская теорема об остатках ]
[ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 9,10,11

Какие цифры надо поставить вместо звёздочек, чтобы число 454** делилось на 2, 7 и 9?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .