Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 85]
Задача
60904
(#05.066)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Коля Васин задумал число от 1 до 31
включительно и выбрал из 5 данных карточек
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
27 |
29 |
31 |
2 |
3 |
6 |
7 |
10 |
11 |
14 |
15 |
18 |
19 |
22 |
23 |
26 |
27 |
30 |
31 |
4 |
5 |
6 |
7 |
12 |
13 |
14 |
15 |
20 |
21 |
22 |
23 |
28 |
29 |
30 |
31 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
те, на которых это число присутствует. Как, зная эти карточки,
угадать задуманное число? Какими должны быть карточки, чтобы по
ним можно было угадывать числа от 1 до 63?
Задача
60905
(#05.067)
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
Карточный фокус. а) Берется колода из
27 карт (без одной масти). Ваш друг загадывает одну из карт.
После чего вы раскладываете все карты в три равные кучки, кладя
каждый раз по одной карте (в первую кучку, затем во вторую, затем
в третью, потом снова в первую и т. д.). Ваш друг указывает на ту
кучку, в которой лежит его карта. Далее вы складываете все три
кучки вместе, вставляя при этом указанную кучку между двумя
другими. Эта процедура повторяется еще два раза. На каком месте в
колоде окажется загаданная карта, после того, как вы сложите
вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала
было 3
n (
n < 9) карт?
Задача
60906
(#05.068)
|
|
Сложность: 2 Классы: 7,8
|
Коля Васин задумал число: 1, 2 или 3. Вы
задаете ему только один вопрос, на который он может ответить ``
да'', ``нет'' или ``не знаю''. Сможете ли вы
угадать число, задав всего лишь один вопрос?
Задача
60907
(#05.069)
|
|
Сложность: 3+ Классы: 8,9,10
|
Коля Васин задумал число от 1 до 200. За
какое наименьшее число вопросов вы сможете его отгадать, если он
отвечает на каждый вопрос
а) ``да'' или ``нет'';
б) ``да'', ``нет'' или ``не знаю''?
Задача
60908
(#05.070)
|
|
Сложность: 5+ Классы: 8,9,10
|
Как и раньше загадывается число от 1 до
200, а загадавший отвечает на вопросы ``да'' или ``
нет''. При этом ровно один раз (за все ответы) он имеет право
соврать. Сколько теперь понадобится вопросов, чтобы отгадать
задуманное число?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 85]