ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 76]      



Задача 61382  (#10.031)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Докажите неравенство для положительных значений переменных:  

Прислать комментарий     Решение

Задача 61383  (#10.032)

Тема:   [ Классические неравенства (прочее) ]
Сложность: 3
Классы: 9,10,11

Докажите для положительных значений переменных неравенство  

Прислать комментарий     Решение

Задача 61384  (#10.033)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство   3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3)  при  a1a2a3b1b2b3.

Прислать комментарий     Решение

Задача 61385  (#10.034)

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 61386  (#10.035)

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .