ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет? ![]() ![]() В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник? ![]() ![]() |
Страница: << 1 2 [Всего задач: 6]
В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
Страница: << 1 2 [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |