ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада имени Леонарда Эйлера (для 8 классов)
>>
2 (2010 год)
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды. Решение |
Страница: << 1 2 3 4 >> [Всего задач: 16]
В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Занумеруем все простые числа в порядке возрастания: p1 = 2, p2 = 3, ... .
При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа k = 1, 2, ..., n нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?
Биссектрисы углов A и C трапеции ABCD пересекаются в точке P, а биссектрисы углов B и D – в точке Q, отличной от P.
В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.
Страница: << 1 2 3 4 >> [Всего задач: 16] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|