ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Есть  2n + 1  батарейка  (n > 2).  Известно, что хороших среди них на одну больше, чем плохих, но какие именно батарейки хорошие, а какие плохие, неизвестно. В фонарик вставляются две батарейки, при этом он светит, только если обе они хорошие. За какое наименьшее число таких попыток можно гарантированно добиться, чтобы фонарик светил?

б) Та же задача, но батареек 2n  (n > 2),  причём хороших и плохих поровну.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 65730  (#6)

Темы:   [ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?

Прислать комментарий     Решение

Задача 65731  (#7)

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

а) Есть  2n + 1  батарейка  (n > 2).  Известно, что хороших среди них на одну больше, чем плохих, но какие именно батарейки хорошие, а какие плохие, неизвестно. В фонарик вставляются две батарейки, при этом он светит, только если обе они хорошие. За какое наименьшее число таких попыток можно гарантированно добиться, чтобы фонарик светил?

б) Та же задача, но батареек 2n  (n > 2),  причём хороших и плохих поровну.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .