ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Заочная олимпиада по теории вероятностей и статистике
>>
9 (2016 год)
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой. Решение |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.
Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.
Билет на электричку стоит 50 рублей, а штраф за безбилетный проезд – 450 рублей. Если безбилетник (заяц) попадается контролёру, то оплачивает и штраф, и стоимость билета. Известно, что контролёр встречается в среднем один раз на 10 поездок. Заяц ознакомился с основами теории вероятностей и решил придерживаться стратегии, которая делает математическое ожидание расходов наименьшим возможным. Как ему поступать: покупать билет каждый раз, не покупать никогда или бросать монетку – покупать билет или нет?
В выпуклом шестиугольнике независимо друг от друга выбраны две случайные диагонали.
Стрелок стреляет по трём мишеням до тех пор, пока не собьёт все. Вероятность попадания при одном выстреле равна p.
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|