ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
XII Олимпиада по геометрии имени И.Ф. Шарыгина (2016 г.)
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи По стороне AB треугольника ABC движется точка X, а по описанной окружности Ω – точка Y так, что прямая XY проходит через середину дуги AB. Найдите геометрическое место центров описанных окружностей треугольников IXY, где I – центр вписанной окружности треугольника ABC. Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP.
Дан неравнобедренный треугольник ABC, AA1 – его биссектриса, A2 – точка касания вписанной окружности со стороной BC. Аналогично определяются точки B1, B2, C1, C2. Пусть O – центр описанной окружности треугольника, I – центр вписанной окружности. Докажите, что радикальный центр описанных окружностей треугольников AA1A2, BB1B2, CC1C2, лежит на прямой OI.
В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.
По стороне AB треугольника ABC движется точка X, а по описанной окружности Ω – точка Y так, что прямая XY проходит через середину дуги AB. Найдите геометрическое место центров описанных окружностей треугольников IXY, где I – центр вписанной окружности треугольника ABC.
Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|